press release
Published: 03 January 2019

Dark matter on the move

Scientists have found evidence that dark matter can be heated up and moved around, as a result of star formation in galaxies. The findings provide the first observational evidence for the effect known as 鈥榙ark matter heating鈥, and give new clues as to what makes up dark matter. The research is published today in the journal .

In the new work, scientists from the 麻豆视频, and set out to hunt for evidence for dark matter at the centres of nearby dwarf galaxies. are small, faint galaxies that are typically found orbiting larger galaxies like our own Milky Way. They may hold clues that could help us to better understand the nature of dark matter.

is thought to make up most of the mass of the universe. However since it doesn鈥檛 interact with light in the same way as normal matter, it can only be observed through its gravitational effects. The key to studying it may however lie in how stars are formed in these galaxies.

When stars form, strong winds can push gas and dust away from the heart of the galaxy. As a result, the galaxy鈥檚 centre has less mass, which affects how much gravity is felt by the remaining dark matter. With less gravitational attraction, the dark matter gains energy and migrates away from the centre, an effect called 鈥榙ark matter heating鈥.

The team of astrophysicists measured the amount of dark matter at the centres of 16 dwarf galaxies with very different star formation histories. They found that galaxies that stopped forming stars long ago had higher dark matter densities at their centres than those that are still forming stars today. This supports the theory that the older galaxies had less dark matter heating.

Professor Justin Read, lead author of the study and Head of the Department of Physics at the 麻豆视频, said: "We found a truly remarkable relationship between the amount of dark matter at the centres of these tiny dwarfs, and the amount of star formation they have experienced over their lives. The dark matter at the centres of the star-forming dwarfs appears to have been 鈥榟eated up鈥 and pushed out."

The findings provide a new constraint on dark matter models: dark matter must be able to form dwarf galaxies that exhibit a range of central densities, and those densities must relate to the amount of star formation.

Professor Matthew Walker, a co-author from Carnegie Mellon University, added: "This study may be the 鈥渟moking gun鈥 evidence that takes us a step closer to understanding what dark matter is. Our finding that it can be heated up and moved around helps to motivate searches for a dark matter particle."

The team hope to expand on this work by measuring the central dark matter density in a larger sample of dwarfs, pushing to even fainter galaxies, and testing a wider range of dark matter models.

A copy of the paper is available from: .

...

*Figure 1 (Credit: J. Read et al.): 

Star formation in tiny dwarf galaxies can slowly "heat up" the dark matter, pushing it outwards. The left image shows the hydrogen gas density of a simulated dwarf galaxy, viewed from above. The right image shows the same for a real dwarf galaxy, IC 1613. In the simulation, repeated gas inflow and outflow causes the gravitational field strength at the centre of the dwarf to fluctuate. The dark matter responds to this by migrating out from the centre of the galaxy, an effect known as 鈥榙ark matter heating鈥.

The new work appears in: 鈥淒ark matter heats up in dwarf galaxies鈥, J.I. Read, M.G. Walker, P. Steger, Monthly Notices of the Royal Astronomical Society (2019), in press (DOI: 10.1093/mnras/sty3404).

Share what you've read?

Media Contacts


External Communications and PR team
Phone: +44 (0)1483 684380 / 688914 / 684378
Email: mediarelations@surrey.ac.uk
Out of hours: +44 (0)7773 479911